
Learning Computer Programs with the Bayesian
Optimization Algorithm

Moshe Looks
Object Sciences Corporation
6359 Walker Lane Suite 100

Alexandria, VA 22310
1-703-253-1181

mlooks@objectsciences.com

Ben Goertzel
Novamente LLC

1405 Bernerd Place
Rockville, MD 20851

ben@novamente.net

Cassio Pennachin
Novamente LLC

1405 Bernerd Place
Rockville, MD 20851

cassio@novamente.net

ABSTRACT
We describe an extension of the Bayesian Optimization Algorithm
(BOA), a probabilistic model building genetic algorithm, to the
domain of program tree evolution. The new system, BOA
programming (BOAP), improves significantly on previous
probabilistic model building genetic programming (PMBGP)
systems in terms of the articulacy and open-ended flexibility of
the models learned, and hence control over the distribution of
instances generated. Innovations include a novel tree
representation and a generalized program evaluation scheme.

Categories and Subject Descriptors
I.2.2 [AI]: Automatic Programming – program synthesis

General Terms
Desgin, Algorithms

Keywords
Genetic Programming, Representations, Empirical Study

1. OVERVIEW AND MOTIVATION
Recently, attempts have been made to extend traditional genetic
algorithms and genetic programming through the incorporation of
explicit modeling of good solutions. This is the idea behind
probabilistic model building genetic algorithms, such as the
(hierarchical) Bayesian Optimization Algorithm (BOA) [6]. BOA
is asymptotically more effective than the GA across a wide range
of problems. We hope that the same scalability and performance
improvements can be obtained in the domain of automated
program tree evolution, or genetic programming [3]. We propose
an extension of BOA for the evolution of program trees, called
BOA programming (BOAP). BOAP is a probabilistic model
building genetic programming system (PMBGP). We compare
with previous PMBGPs and provide experimental results on time
series prediction and bioinformatics applications.

2. REVIEW OF BOA
The Bayesian Optimization Algorithm (BOA) is a population-
based optimization algorithm that works on bit strings. BOA
significantly outperforms the genetic algorithm on a range of
optimization problems by maintaining a centralized probabilistic
model of the population it is evolving [6]. Different variations on
BOA can be obtained by using different types of probabilistic
models, most notably in hierarchical BOA [6], which is utilized in
this work, but the basic algorithm remains the same:

(1) Generate a random initial population P(0)
(2) From the promising instances in P(t) learn a model M(t)
(3) Generate a new set of instances O(t) from M(t)
(4) Merge O(t) and P(t), creating P(t+1)
(5) Iterate steps (2) through (4) until termination criteria are met.

Following this algorithm, good collections of variable
assignments will be preserved in instance generation (if the
modeling is accurate). Thus, BOA can explore new areas of the
search space in a more directed and focused way than GA/GP,
while retaining the benefits of a population-based optimization
algorithm (diversity of candidate solutions and non-local search).

3. BOA PROGRAMMING
Previous work by Ocenasek [5] has extended binary BOA to
fixed-length strings with non-binary discrete and continuous
variables. We extend his approach to variable-shaped trees. We
represent program trees in curried form [1], where all function
applications are single argument, and all internal nodes (denoted
by '@') represent function applications. Programs expressed in
this form are stored using a new representational scheme, zigzag
trees, which are a special kind of binary tree. A zigzag tree of size
N can be encoded as a list of N leaves, and a list of N-1 Boolean
values (which indicate at each point in which direction to keep
growing the tree). An important property of zigzag trees is that if a
couple of simple rewrite rules are allowed to live in leaves, they
become fully general, and can represent any possible binary tree.
See a sample zigzag tree below.

This tree is encoded as:

Leaves:

 < 3 x if 42 3

Structure:

 Right Right Left Right Right

Copyright is held by the author/owner(s).
GECCO’05, June 25-29, 2005, Washington, DC, USA.
ACM 1-59593-010-8/05/0006.

747

This representation can be modeled by BOA, but the models may
produce syntactically incorrect structures, as the type of a parent
doesn't necessarily constrain the types of its children to be
compatible. We address this problem with the use of a more
general evaluation scheme that can evaluate such incorrect
expressions through local transformations.

While this BOA extension is effective at optimizing small
subcomponents, and keeping components correctly intact, it does
not, on its own, lead to the addition of new components, because
it lacks a global genetic operator. To overcome this, we have
added a low-frequency traditional GP crossover operator, which
can cause trees to grow, and suffices to move subcomponents to
new locations, where they can be optimized by BOA.

4. COMPARISON WITH PRIOR WORK
An early PMBGP was probabilistic incremental program
evolution (PIPE) [7]. PIPE uses standard GP function trees as its
representation. New trees are generated by drawing, in a depth-
first fashion, terminals and leaves from the distribution at each
(absolute) tree position, with an additional mutation operator.
Some more recent work, such as program evolution with explicit
learning (PEEL) [8], uses more complex models, in this case
program generation grammars learned via ant colony
optimization. The primary limitations of PIPE and hPIPE are the
fixed complexity of their models (no dependencies learned
between positions), and the complete reliance on absolute
position. PEEL, on the other hand, is capably of learning variable-
complexity models, but the dependencies they capture are based
on location of elements in the tree, not on tree content.

5. EXPERIMENTS
In all of the following experiments, BOAP is configured to
generate a new population as described in [6], and the crossover
operator is then applied to a random selection of 20% of the
instances, excluding the single best instance in the population.

5.1 Sunspot Time Series Prediction
A well-studied time series prediction problem is the yearly
sunspot data for 1700-1979. Published benchmarks are available
for PEEL [8] and GP [2]. In order to allow for meaningful
comparison to these results, we used the error measure

where n is the number of data points, the xi are the values, and
σ2=0.41056 is the variance of the entire dataset. 600,000 fitness
evaluations are used per run, and 15 independent runs were
carried out for BOAP and PEEL, and 10 for GP.

Table 1. Sunspot Time Series Prediction
 Training

(1700-1920)
Generalization

(1921-1955)
Generalization

(1956-1979)
BOAP 0.124±0.007 0.169±0.018 0.289±0.06

PEEL 0.137±0.016 0.185±0.039 0.291±0.071

GP 0.125±0.006 0.182±0.037 0.37±0.06

5.2 Gene Function Inference
In this set of experiments, we turn to a new and challenging
supervised categorization problem: the automated placement of
human genes in functional categories based on gene expression
data. In order to cope with the vast amounts of new bioinformatics
data made available by new biological technologies, researchers
have developed a variety of tools, including controlled
vocabularies for discussing biological phenomena, and
collaborative knowledge bases constructed using these
vocabularies. One such effort is the multi-organism Gene
Ontology (GO) [4]. Genes are annotated into the Gene Ontology
by scientists throughout the world, but currently the GO is still
very sparse. We utilized genomic expression data to create models
for five categories of the GO. These models can then be used to
assign function to previously unnanotated genes, offering
biologists new and important insights. This is an exceedingly hard
problem given the scarce and noisy nature of the data, and GP and
SVMs fail to generate any useful models even in-sample. BOAP,
on the other hand, learns good models in-sample for all
categories, and generalizes very well in one of them, Ribosomes.

Table 2: Gene Function Categorization Precision

6. REFERENCES
[1] Field, A. J., and Harrison, P. G. 1988. Functional

Progamming. Boston, MA: Addison-Wesley.
[2] Jäske, Harri. 1996. Prediction of Sunspots by GP. In Proc. of

the Second Nordic Workshop on Genetic Algorithms and
their Applications (2NWGA), pages 79-88.

[3] Koza, J. R. 1992. Genetic Programming: On the
Programming of Computers by Means of Natural Selection.
Cambridge, MA: MIT Press.

[4] Gene Ontology Consortium. 2000. Gene Ontology: Tool for
Unification of Biology. Nature Genet, 25:25-29.

[5] Ocenasek, J. 2002. Parallel Estimation of Distribution
Algorithms. PhD. thesis, Brno University of Technology.

[6] Pelikan, M. 2002. Bayesian Optimization Algorithm: From
Single Level to Hierarchy. Ph.D. thesis, University of Illinois
at Urbana-Champaign.

[7] Salustowicz, R. P., and Schmidhuber, J. 1997. Probabilistic
Incremental Program Evolution. Evolutionary Computation,
5(2):123-141.

[8] Shan, Y., McKay, R. I., Abbass, H. A., and Essam, D. 2003.
Program Evolution with Explicit Learning: a New
Framework for Program Automatic Synthesis. Technical
Report CS04/03. School of Computer Science, Univ.
College, Univ. of New South Wales.

 Train Test

Catalytic Activity 0.729±0.009 0.464±0.025

Intracellular 0.766±0.01 0.526±0.027

Ribosome 0.907±0.005 0.814±0.022

Cell Growth/Maintenance 0.751±0.016 0.5084±0.043

Metabolism 0.773±0.007 0.549±0.023

748

