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ABSTRACT 
We describe an extension of the Bayesian Optimization Algorithm 
(BOA), a probabilistic model building genetic algorithm, to the 
domain of program tree evolution. The new system, BOA 
programming (BOAP), improves significantly on previous 
probabilistic model building genetic programming (PMBGP) 
systems in terms of the articulacy and open-ended flexibility of 
the models learned, and hence control over the distribution of 
instances generated. Innovations include a novel tree 
representation and a generalized program evaluation scheme.  

Categories and Subject Descriptors 
I.2.2 [AI]: Automatic Programming – program synthesis 

General Terms 
Desgin, Algorithms 

Keywords 
Genetic Programming, Representations, Empirical Study 

1. OVERVIEW AND MOTIVATION 
Recently, attempts have been made to extend traditional genetic 
algorithms and genetic programming through the incorporation of 
explicit modeling of good solutions. This is the idea behind 
probabilistic model building genetic algorithms, such as the 
(hierarchical) Bayesian Optimization Algorithm (BOA) [6]. BOA 
is asymptotically more effective than the GA across a wide range 
of problems. We hope that the same scalability and performance 
improvements can be obtained in the domain of automated 
program tree evolution, or genetic programming [3]. We propose 
an extension of BOA for the evolution of program trees, called 
BOA programming (BOAP). BOAP is a probabilistic model 
building genetic programming system (PMBGP). We compare 
with previous PMBGPs and provide experimental results on time 
series prediction and bioinformatics applications.  

2. REVIEW OF BOA 
The Bayesian Optimization Algorithm (BOA) is a population-
based optimization algorithm that works on bit strings. BOA 
significantly outperforms the genetic algorithm on a range of 
optimization problems by maintaining a centralized probabilistic 
model of the population it is evolving [6]. Different variations on 
BOA can be obtained by using different types of probabilistic 
models, most notably in hierarchical BOA [6], which is utilized in 
this work, but the basic algorithm remains the same: 

(1) Generate a random initial population P(0) 
(2) From the promising instances in P(t) learn a model M(t) 
(3) Generate a new set of instances O(t) from M(t) 
(4) Merge O(t) and P(t), creating P(t+1) 
(5) Iterate steps (2) through (4) until termination criteria are met. 

Following this algorithm, good collections of variable 
assignments will be preserved in instance generation (if the 
modeling is accurate). Thus, BOA can explore new areas of the 
search space in a more directed and focused way than GA/GP, 
while retaining the benefits of a population-based optimization 
algorithm (diversity of candidate solutions and non-local search). 

3. BOA PROGRAMMING 
Previous work by Ocenasek [5] has extended binary BOA to 
fixed-length strings with non-binary discrete and continuous 
variables. We extend his approach to variable-shaped trees. We 
represent program trees in curried form [1], where all function 
applications are single argument, and all internal nodes (denoted 
by '@') represent function applications. Programs expressed in 
this form are stored using a new representational scheme, zigzag 
trees, which are a special kind of binary tree. A zigzag tree of size 
N can be encoded as a list of N leaves, and a list of N-1 Boolean 
values (which indicate at each point in which direction to keep 
growing the tree). An important property of zigzag trees is that if a 
couple of simple rewrite rules are allowed to live in leaves, they 
become fully general, and can represent any possible binary tree. 
See a sample zigzag tree below. 

 

This tree is encoded as: 
 
Leaves:  

   < 3 x if 42 3 

Structure: 

   Right Right Left Right Right 
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This representation can be modeled by BOA, but the models may 
produce syntactically incorrect structures, as the type of a parent 
doesn't necessarily constrain the types of its children to be 
compatible. We address this problem with the use of a more 
general evaluation scheme that can evaluate such incorrect 
expressions through local transformations.  

While this BOA extension is effective at optimizing small 
subcomponents, and keeping components correctly intact, it does 
not, on its own, lead to the addition of new components, because 
it lacks a global genetic operator. To overcome this, we have 
added a low-frequency traditional GP crossover operator, which 
can cause trees to grow, and suffices to move subcomponents to 
new locations, where they can be optimized by BOA. 

4. COMPARISON WITH PRIOR WORK 
An early PMBGP was probabilistic incremental program 
evolution (PIPE) [7]. PIPE uses standard GP function trees as its 
representation. New trees are generated by drawing, in a depth-
first fashion, terminals and leaves from the distribution at each 
(absolute) tree position, with an additional mutation operator. 
Some more recent work, such as program evolution with explicit 
learning (PEEL) [8], uses more complex models, in this case 
program generation grammars learned via ant colony 
optimization. The primary limitations of PIPE and hPIPE are the 
fixed complexity of their models (no dependencies learned 
between positions), and the complete reliance on absolute 
position. PEEL, on the other hand, is capably of learning variable-
complexity models, but the dependencies they capture are based 
on location of elements in the tree, not on tree content. 

5. EXPERIMENTS 
In all of the following experiments, BOAP is configured to 
generate a new population as described in [6], and the crossover 
operator is then applied to a random selection of 20% of the 
instances, excluding the single best instance in the population. 

5.1 Sunspot Time Series Prediction 
A well-studied time series prediction problem is the yearly 
sunspot data for 1700-1979. Published benchmarks are available 
for PEEL [8] and GP [2]. In order to allow for meaningful 
comparison to these results, we used the error measure 

 
where n is the number of data points, the xi are the values, and 
σ2=0.41056 is the variance of the entire dataset. 600,000 fitness 
evaluations are used per run, and 15 independent runs were 
carried out for BOAP and PEEL, and 10 for GP. 

Table 1. Sunspot Time Series Prediction 
 Training 

(1700-1920) 
Generalization 

(1921-1955) 
Generalization 

(1956-1979) 
BOAP 0.124±0.007 0.169±0.018 0.289±0.06 

PEEL 0.137±0.016 0.185±0.039 0.291±0.071 

GP 0.125±0.006 0.182±0.037 0.37±0.06 

5.2 Gene Function Inference 
In this set of experiments, we turn to a new and challenging 
supervised categorization problem: the automated placement of 
human genes in functional categories based on gene expression 
data. In order to cope with the vast amounts of new bioinformatics 
data made available by new biological technologies, researchers 
have developed a variety of tools, including controlled 
vocabularies for discussing biological phenomena, and 
collaborative knowledge bases constructed using these 
vocabularies. One such effort is the multi-organism Gene 
Ontology (GO) [4]. Genes are annotated into the Gene Ontology 
by scientists throughout the world, but currently the GO is still 
very sparse. We utilized genomic expression data to create models 
for five categories of the GO. These models can then be used to 
assign function to previously unnanotated genes, offering 
biologists new and important insights. This is an exceedingly hard 
problem given the scarce and noisy nature of the data, and GP and 
SVMs fail to generate any useful models even in-sample. BOAP, 
on the other hand, learns good models in-sample for all 
categories, and generalizes very well in one of them, Ribosomes. 

Table 2: Gene Function Categorization Precision 
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 Train Test 

Catalytic Activity 0.729±0.009 0.464±0.025 

Intracellular 0.766±0.01 0.526±0.027 

Ribosome 0.907±0.005 0.814±0.022 

Cell Growth/Maintenance  0.751±0.016 0.5084±0.043 

Metabolism 0.773±0.007 0.549±0.023 
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